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Abstract 
 
A general adaptive element subdivision technique is presented for the numerical 
evaluation of weakly singular integrals, which often appear in three-dimensional 
boundary element analysis equations. In this algorithm, the weakly singular 
boundary element is broken up into a few sub-elements through a sphere of 
decreasing radius. The sub-elements involving the singular point are evaluated 
numerically after using a coordinate transformation to remove the singularities, 
while other quadrilateral sub-elements and triangular sub-elements are evaluated 
numerically by the standard Gaussian quadrature and Hammer quadrature 
respectively. The number of sub-elements and their size are determined adaptively 
according to the position of the singular point. Numerical examples are presented 
for both planar and curved surface element. The results demonstrate our method 
can provide higher accuracy and efficiency than the conventional method. 
Keywords: weakly singular integrals, 3D boundary element, subdivision 
techniques, Gaussian quadrature. 

1 Introduction 

Weakly singular integrals are appeared in the basic boundary integral equations 
(BIEs) when the boundary integral equation method (BEM) is used to solve 
potential and mechanical problems. Accurate evaluating weakly singular integral 
is of importance for successful implementation of BEM. Much effort has been 
made to remove the weakly singular integrals arising in BIEs. Chati and 
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Mukherjee have used a method suggested by Nagaranjan and Mukherjee [1] to 
carry out the weakly singular integration in boundary node method. Usually, polar 
coordinate transformation is used to solve this problem [2]. Zhang proposed a new 
coordinate transformation denoted as  ,  transformation to deal with weakly 

singular integrals [3]. However, due to the reason of conventional polar coordinate 
transformation and  ,  transformation just by directly connecting the singular 

point with each vertex of element, shape of sub-elements will be poor when the 
singular point is located near the edge or in the edge etc., which will result in poor 
calculation accuracy. The  ,  transformation is similar to the polar coordinate 

transformation. However, its implementation is simpler than that of polar 
transformation.  
     In this paper, an adaptive element subdivision technique is presented by 
dividing the boundary element over which the source point is located into a 
number of sub-elements through a sphere of decreasing radius. This algorithm is 
similar to the advancing Front method [4] which should update vertex and edge in 
every step. No matter where the position of the source point is located, every sub-
element has relative good shape with the proposed algorithm. Then the  , 
transformation is used to remove singularities in the sub-element which includes 
the source point. While the remaining regular quadrilateral and triangular sub-
elements are respectively evaluated using the standard Gaussian quadrature and 
Hammer quadrature. The computational results show that higher accuracy could 
be obtained even with fewer Gaussian points. A number of element subdivision 
and numerical examples are given to verify the presented method. 

2 3D singular boundary integrals 

In this paper, we deal with the following boundary integral with weakly singularity 
over 3D boundary element S : 

(y, r)
(x)dS(x)

S

f
I

r
                                           (1) 

where y and x are referred to as the source point and the field point in BEM, 

respectively, y is in S , r is the Euclidean distance between y and x , f is a well-

behaved function, and (x) is a shape function. Since y is inside the integration 

element S , the integrals (1) become weakly singular. 
   Now, we consider the boundary integral equations of 3D potential problems in 
the domain enclosed by the boundary . The basic function is presented in 
terms of the potential u on the boundary as follows [5]: 

* *(y) (y) (x) (x, y) (x) (x) (x, y) (x)c u q u d u q d
 

                      (2) 

where c is a coefficient depending on the smoothness of the boundary at the source 
point y. * (x, y)u is the fundamental solution for the 3D problem expressed as 
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And * (x, y)q is the derived fundamental solutions 
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where n is the unit outward normal direction to the boundary , with components 
ni, i = 1,2,3. 
     To numerically evaluate boundary integrals for Eqs. (2), the boundary is 
divided into a number of surface elements. Then boundary integration is 
performed on each element as Eqs. (1). Weakly singular integrals arise when the 
source point is inside the integration element.  
     In this paper, we develop an adaptive element subdivision technique coupled 
with the  ,  transformation for weakly singular integrals on 3D boundary 

element. The detailed implementation is described in the following section. 

3 Adaptive element subdivision technique 

To further improve the computational accuracy of the weakly singular integral, an 
adaptive element subdivision technique is proposed in this part. With this adaptive 
element subdivision technique, no matter where the position of the source point is 
located in the element, good shape of sub-elements could be obtained due to the 
property of sphere and merging operation. Since this subdivision technique is 
performed in element local coordinate space, it is a uniform algorithm for every 
kind element. Here we take quadrilateral element as an example to explain the 
algorithm. The detailed procedure is introduced as follows: 
 
Definition 1: 
For a 3D boundary element which the source point is located in, let sourceDpt be the 

position of source point. t
iV and t

iE are referred to as its vertex and corresponding 

edge respectively. t
iR is the line segment starting from sourceDpt  and ending with

t
iV as shown in Fig. 1, i =0,1,2 if it’s a triangular element, or  

i =0,1,2,3 if it’s a quadrilateral element at the beginning of procedure, 
subsequently, the number of i is indefinite due to the update of procedure, t

iV  and
t

iE are arranged by counterclockwise, where t is the number of step and it’s ended 
with the condition which will be mentioned as follows.  
 
 
Definition 2: 
Let maxl be the maximum distance from sourceDpt to t

iV and minVtxl be the minimum 

distance from sourceDpt to t
iV where sourceDpt is not coincident with t

iV , let minEdgel be 
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the minimum distance from sourceDpt  to t
iE where sourceDpt is not located in t

iE . 

Then we define minl as: 

 min minVtx minEdgemin{ , }l l l                                       (5) 

In every step, a sphere with the center of sourceDpt is constructed and its radius 
defined as: 

 max*t
spherer ratio l                                              (6) 

If min*spherer ratioMin l , sub-elements without containing the source point are 
obtained as shown in Fig. 2, otherwise the sub-elements including the source point 
are obtained, where ratioMin and ratio are empirical value. The sphere may be 
intersected with t

iE and t
iR , as shown in Fig. 1, let t

iIrad be the intersection point 

between t
iR and the sphere, let t

iIFir and t
iISec be the first and second intersection 

points between t
iR and the sphere.  

 
Figure 1: First step of element subdivision. 

     In order to simplify the algorithm, the detailed operations for updating t
iV and 

t
iE will be omitted. The main algorithm for creating sub-element is described by 

pseudo-code format in Table 1. 
 

Table 1:  Creating sub-element algorithm. 

for each edge t
iE  

 if( t
iV in the sphere) 

  if( t
iIFir || t

iISec ) 

   if( t
iIFir ) 

    a new triangular sub-element is created  
with t

iIFir , t
NextV , t

NextIrad  
   end 
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   if( t
iIFir && t

iISec ) 
    a new triangular sub-element is created  

with t
iISec , t

NextV , t
NextIrad  

   end 
  end 
 else 
  if( t

iIFir || t
iISec ) 

   if( t
iIFir ) 

a new triangular sub-element is created  
with t

iV , t
iIFir , t

iIrad  
   end 
   if( t

iIFir && t
iISec ) 

a new triangular sub-element is created  
with t

iISec , t
NextV , t

NextIrad  
   end 
  else  

a new quadrilateral sub-element is created  
with t

iISec , t
NextV , t

NextIrad  
  end 
 end 
end 
Where t

NextV , t
NextIrad are the corresponding next item of i  in t step. 

 
   As shown in Fig. 2, after above procedure, new sub-elements have been obtained 
and t

iV and t
iE  have also been updated, then repeat the algorithm until all sub-

elements have been created.  

 

Figure 2: Second step of element subdivision. 
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Table 1:  Continued.



   
                                                 (a)                                       (b) 

Figure 3: Element subdivision before merging operation. 

     There are two factors that influence the computational accuracy of  ,   

transformation for sub-element which includes the source point. One is that length 
of the two edges intersecting with the source point of the sub-element can’t be 
much difference, another is that angle between the two edge can’t be too large. If 
second case occurred, then sub-element will be divided into two sub-elements 
again until angle of every sub-element satisfied the condition angle diviAngle
defined in the procedure. As shown in Fig. 3(b), although the length of the two 
edges of the sub-element is same and the angle is small enough, which is beneficial 

for  ,  transformation to obtain more accurate results, total number of sub-

elements is too large which will cause much more computational cost and  
shape of some of sub-element without including the source point have  
relative poor which will cause accuracy problems. In order to deal with  
this situation, a merging operation will be introduced. If t

iIFir is close  

to t
iV or t

NextV  defined as ( , V ) *d(V ,V )t t t t
i i i Nextd IFir edgeFactor  or 

( , V ) *d(V , V )t t t t
i Next i Nextd IFir edgeFactor , edgeFactor =0.1, then move the t

iIFir

to t
iV or t

NextV , which is similar to t
iISec . 

   If t
iIrad is close to t

iIFir or t
iV defined as ( , ) *t t

i i sphered Irad IFir radFactor r or 

( , ) *t t
i i sphered Irad V radFactor r , radFactor =0.1, then move the t

iIrad to t
iIFir  or

t
iV . New sub-elements can be obtained after merging operation as shown in Fig. 4. 

The number of sub-elements is reduced and shape of sub-elements is improved 
apparently.  
 

 
                             (a)                                   (b)                                    (c) 

Figure 4: Element subdivision after merging operation. 
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     There are some advantages of the proposed adaptive element subdivision 
technique. In this method, the sub-elements including the source point have better 
shape than that in conventional subdivision method [3], while the remaining sub-
elements also have better shape due to the property of sphere and merging 
operation. The second is that more Gaussian points are shifted towards the source 
point and a large number of Gaussian points are avoided compared to the 
conventional subdivision method which will be mentioned in next section. What’s 
more, the number of sub-elements and their size are determined adaptively by the 
position of singular point. Using the adaptive element subdivision technique 
coupled with the  ,  transformation, the weakly singular integrals can be 

calculated with higher accuracy. The reader should note that all the intersecting 
points should be projected from real-word coordinate space to element local 
coordinate space in this algorithm. 

4 Numerical examples 

In this section, comparison between the adaptive element subdivision and 
conventional subdivision are made. In the conventional subdivision method, the 
integration element is divided directly into sub-triangles by simply connecting the 
singular point with each vertex of element as shown in Fig. 5, thus the shape of 
sub-triangles will poor when the singular point is located near the edge or in the 
edge especially for slender elements, which will result in the numerical results 
become less accurate [6, 7]. However, with the proposed adaptively element 
subdivision technique, integration element is broken up into triangular and 
quadrilateral sub-elements through a sphere of decreasing radius, consequently, 
shape of sub-element is good which are beneficial conditions for using  , 
transformation to get more accuracy.  
 

 

Figure 5: The conventional subdivisions of quadrilateral element. 

     Several examples of element subdivision and corresponding numerical 
examples compared with conventional subdivision method for planar element and 
curved surface element are presented to verify the effectiveness and accuracy of 
our method. The position of vertices of the element is labeled in the corresponding 
picture and numerical result comparison is presented in the table following 
element subdivision examples. In order to better compare our method with 
conventional method, the same integral scheme is used in numerical examples. 

The  ,  transformation is used to remove singularities in the sub-element 










( )a ( )b

( )c

( )d

( )e
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which includes the source point. While the remaining regular quadrilateral and 
triangular sub-elements are respectively evaluated by the standard Gaussian 
quadrature and Hammer quadrature. In this paper, 2ratioMin  , 0.25ratio  , 
the numerical values obtained by our method and conventional method named as 
sphere subdivision and direct subdivision respectively will be compared to ‘exact’ 
values in terms of the relative error defined by: 

Relative Error = numerical exact

exact

I I

I


                                      (7) 

where numericalI and exactI  are the numerical and ‘exact’ values of the integral under 

consideration, respectively. The accuracy of exactI  is to 13 decimal places. 

4.1 Planar element examples 

In these examples, adaptive element subdivision and corresponding numerical 
result are presented for planar rectangular element with the node coordinates of  
(1, 1), (-1, 1), (-1, -1), (1, -1) as shown in Fig. 6 and slender element with the node 
coordinates of (10, 1), (0, 1), (0, 0), (10, 0) as shown in Fig. 7. The coordinates of 
the source points are set at (0.99, 0.9), (0.0, 0.99), (9.0, 0.9), (5.0, 0.9). The figure 
on the right with red box is the partial enlarged view of the corresponding figure 
on the left as shown in Fig. 6 and Fig. 7. Total number of Gaussian points and 
Relative Error of numerical evaluation for planar rectangular and slender element 
with two different subdivision method are listed in Table 2. As shown in Fig. 6 
and Fig. 7, shape of sub-elements of planar rectangular element and slender 
element are good with the proposed adaptive element subdivision technique. 
 

  
(a) 
 

   
(b) 

Figure 6: The sphere adaptive subdivisions of planar rectangular element. 
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(a) 

 
(b) 

Figure 7: The sphere adaptive subdivisions of planar slender element. 

 

Table 2:  Numerical evaluation for planar rectangular element and slender 
element. 

 

Planar 
element 

Source point 
Gaussian points number  Relative error 
direct 

subdivision 
sphere 

subdivision 
direct 

subdivision 
sphere 

subdivision 

rectangular  
(0.99, 0.9) 1200 1191 4.46e-004 7.73e-008 
(0.0, 0.99) 1200 843  2.10e-003 3.35e-008 

slender  
(9.0,0.9) 1200 1100 3.73e-004 2.73e-007 
(5.0, 0.9) 1200 1100 3.55e-003 8.18e-008 

 

4.2 Curved surface element examples 

In these examples, adaptive element subdivision and corresponding numerical 
result are presented for curved surface rectangular element with the node 
coordinates of (1, 1, 1), (-1, 1, 0), (-1, -1, 1), (1 ,-1 ,0) as shown in Fig. 8 and 
slender element with the node coordinates of (10, 1, 0.5), (0, 1, 0), (0, 0, 0.5), (10, 
0, 0) as shown in Fig. 9. The figure on the right is the planform of the 
corresponding figure on the left and the figure on the below is its partial enlarged 
view as shown in Fig. 8 and Fig. 9. The coordinates of the source points are set at 
(0.99, 0.9, 0.9455), (0.0, 0.99, 0.5), (9.5, 0.95, 0.4525), (5.0, 0.9, 0.25). Total 
number of Gaussian points and Relative Error of numerical evaluation for curved 
surface rectangular and slender element with two different subdivision methods 
are listed in Table 3. As shown in Fig. 8 and Fig. 9, shape of sub-elements of 
curved surface rectangular element and slender element are good with the 
proposed adaptive element subdivision technique. 
     The results demonstrate that shape of sub-elements for planar or curved surface 
element is good with the proposed adaptive element subdivision technique and our 
method can provide higher accuracy and efficiency than the conventional method 
even with fewer Gaussian points.  
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(a) 

 
(b) 

Figure 8: The sphere adaptive subdivisions of curved rectangular element. 

 
 

 
(a) 

 
(b) 

Figure 9: The sphere adaptive subdivisions of curved slender element. 
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Table 3:  Numerical evaluation for curved surface rectangular and slender 
element. 

Curved 
surface 
element 

Source point 
Gaussian points number  Relative error 

direct 
subdivision 

sphere 
subdivision 

direct 
subdivision 

sphere 
subdivision 

rectangular 
(0.99,0.9,0.9455) 1200 815 5.74e-004 2.13e-007 

(0.0, 0.99,0.5) 1200 843 2.33e-003 8.44e-009 

slender  
(9.5,0.95,0.4525) 1200 1045 1.28e-003 1.74e-007 

(5.0, 0.9,0.25) 1200 1100 3.50e-003 8.63e-008 

5 Conclusions and future work 

A general adaptive element subdivision technique for the numerical evaluation of 
weakly singular integrals on 3D boundary element was proposed in this paper. 
Employing the proposed method, no matter planar and curved surface boundary 
element or where the position of singular point is located, sub-elements with good 
shape can be obtained which is convenient for getting higher accuracy. This 
algorithm is simple and powerful. Numerical examples were presented to verify 
our method. Results demonstrated that with this adaptive element subdivision 
algorithm higher accuracy and efficiency can be obtained than the conventional 
method. Extension of our work to 3D nearly singular integral is under 
consideration now. 
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